Exercise 330

A car is racing along a circular track with diameter of 1 mi . A trainer standing in the center of the circle marks his progress every 5 sec . After 5 sec , the trainer has to turn 55° to keep up with the car. How fast is the car traveling?

Solution

Draw a picture of the circular track and label the given and unknown quantities.

The arclength s that the car travels is

$$
\begin{aligned}
s & =r \theta \\
& =(0.5 \mathrm{mi})\left(\frac{55^{\circ}}{180^{\circ}} \pi\right) \\
& =\frac{11 \pi}{72} \\
& \approx 0.5 \mathrm{mi} .
\end{aligned}
$$

The speed of the car is this distance divided by the time it took to travel this far.

$$
\begin{aligned}
v & =\frac{d}{t} \\
& =\frac{\frac{11 \pi}{72} \mathrm{mi}}{5 \mathrm{~s}} \\
& =\frac{11 \pi}{360} \frac{\mathrm{mi}}{\mathrm{~s}} \\
& =\frac{11 \pi}{360} \frac{\mathrm{mi}}{\mathrm{~s}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \\
& =110 \pi \frac{\mathrm{mi}}{\mathrm{hr}} \\
& \approx 346 \frac{\mathrm{mi}}{\mathrm{hr}}
\end{aligned}
$$

